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Toward Designing Drug-Like Libraries: A Novel Computational
Approach for Prediction of Drug Feasibility of Compounds

Jing Wang* and Kal Ramnarayan
Structural Bioinformatics Inc., 10929 Technology Place, San Diego, California 92127

ReceiVed June 25, 1999

Prediction of the degree of drug-like character in small molecules is of great industrial interest. The major
barrier, however, is the lack of a definition for drug-like character. We used the concept of the multilevel
chemical compatibility (MLCC) between a compound and a drug library as a measure of the drug-like
character of a compound. The rationale is that the local chemical environment of each atom or group of
atoms in a compound largely contributes to the stability, toxicity, and metabolism in vivo. A systematic
comparison of the local environments within a compound and those within the existing drugs provides a
basis for determining whether and how much a compound is drug-like. We applied the MLCC calculations
to four test sets: top selling drugs, compounds under biological testing prior to the preclinical test, anticancer
drugs, and compounds known to have poor drug-like character. The following conclusions were obtained:
(1) A convergent number of unique local structure types were found in the analysis of the library of the
existing drugs. It suggests that the current drug library contains about 80% of all the viable types; therefore,
discovery of a drug with new local structures is only an event of relatively small probability. (2) The method
is highly selective in discerning drug-like compounds: most of the top drugs are predicted to be drug-like,
about one-quarter of the biological testing compounds are drug-like, and about one-fifth of the anticancer
drugs are drug-like. (3) The method also correctly predicted that none of the known problematic compounds
are drug-like. (4) The method is fast enough for computational screening of virtual combinatorial chemistry
libraries and databases of available compounds.

1. Introduction

The current technologies of drug discovery and develop-
ment involve many stages, usually including initial screens,
iterative lead optimizations, various pharmacokinetic tests,
and final clinical trials. A strategy that allows focusing
research efforts on the promising compounds in any of the
stages would greatly increase the speed and cost-effectiveness
of the entire process. Some groups have constructed drug-
like combinatorial chemistry libraries1 or selected drug-like
compounds for screening.2,3 Thus, the initial lead discovery
stages would generate promising candidates for later devel-
opment. Continuing in this direction, we developed a compu-
tational strategy for assessing the potential of compounds to
act as drugs. It can be applied to any stage where one desires
focusing on drug-like candidates. In accordance to the
principles that will be elucidated later, our method is named
multilevel chemical compatibility (MLCC) calculation.

We considered that the chemical features of the substruc-
tures constituting a molecule are of primary importance in
determining whether it would exhibit good in vivo behavior.
For example, compounds bearing either reactive groups or
bonds, which are easily broken with or without enzymes,
are usually not suitable as drug candidates. Toxicity is often
reported to relate to the existence of certain “toxicophore”
groups, since these groups or their metabolites can undergo
undesirable interactions with in vivo targets.4,5 Similarly, the

absorption, distribution, metabolism, and excretion of a drug
are all dependent on the substructures which constitute the
drug. Therefore, to determine whether a compound should
be selected as a drug candidate, it is rational to compare its
constituent substructures with those of existing drugs.

We further reasoned that not only the substructures but
also the local chemical environments surrounding substruc-
tures are important for determining the in vivo behavior of
a compound. For example, a structural unit such as a carbonyl
group (CdO) may or may not be tolerated in vivo depending
on the nature of its surrounding atoms. To reflect this fact,
we developed the concept of “local structures” which
describes the local chemical environment around each atom
or group of atoms within a molecule. A compound is
considered to bear drug-like characteristics if all its atoms
or groups are situated in similar environments to those found
in existing drugs. The substructures and local environments
are examined at multiple levels of atom grouping.

The local structures of a compound were described by a
set ofn-centered groups. Ann-centered group is defined as
the part of the molecule formed byn contiguously connected
non-hydrogen atoms plus the immediate neighboring atoms.
The monocentered, dicentered, tricentered, and tetracentered
groups were calculated for every entry in a drug library. The
found groups were categorized into types. In examining a
compound, the multicentered groups of the compound were
similarly calculated and compared with the types from the
drug library. A compound was considered as drug-compatible
at leveln + 1 if all then-centered groups from the compound
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are consistent with the types from the drug library. The
analysis was applied to a set of top selling drugs, compounds
under biological testing, anticancer drugs, and known
problematic molecules, respectively. It turned out that the
calculations clearly reflect the feasibility of compounds to
be used as drugs.

A potential problem with this approach is that the existing
drugs may not have exhausted all the possible local structure
types. Thus, the compounds with novel local motifs may
artificially be ranked as non-drugs. We performed a con-
vergence analysis for the numberN of unique local structure
types in the current drug library. We found thatN approaches
convergence when the contributing drugs increase. Most local
structure types viable to construct drugs have been used in
the existing drugs, and those unsuitable have been filtered
out as a result of the experimental selections in drug
discovery and development.

Few publications have addressed the questions about
discriminating drugs and non-drugs. Sadowski and Kubinyi2

used 120 atom types of Ghose and Crippen6 as descriptors
of chemical structures and trained a neural network to
discriminate drug molecules and non-drug molecules in terms
of the constituent atom types. Ajay et al.3 used 166 ISIS
substructure keys as descriptors and also a neural network
as a discrimination learning tool. Other related publications
include those of Bemis and Murcko7 and Lewell et al.,8 which
extract information from existing drugs but are not designed
for calculation of drug-like character. The common feature
of these methods is that they use a set of predefined
substructures as molecular descriptors. In contrast, the
strength of our approach is that we use a general rule to
describe any type of substructure. A large number of group
types were identified from the drug library. For example,
949, 3995, 18748, and 69646 group types were identified
for mono- to tetracentered groups, respectively. Such a large
variety of group types cannot be covered by an empirically
given, predefined set of chemical fragments. With fewer
descriptors, the neural network technologies tend to recognize
the potential patterns in composition of the descriptors within
molecules as a basis for discrimination of drugs and non-
drugs. The success of the pattern recognition depends on
the constructs of the neural networks, definitions of the
descriptors, and existence or not of any common patterns
shared among drugs. In comparison, the MLCC calculation
systematically searches for all the “local patterns”, or local
structures, which avoids the uncertainties associated with the
neural network technologies.

MLCC calculation is conceptually different from neural
network and similarity approaches. It determines whether a
compound is drug-like based on compatibility and level of
compatibility of the local structures, while disregarding
overall similarity of a compound to drugs. This allows novel
compounds to be ranked as drugs. In contrast, neural network
approaches depend on the existence of certain collective,
“recognizable” features shared among drugs. Similarity
approaches are based on overall similarity of a compound
and an existing drug. The shortage with the latter is that not
only novel compounds cannot be ranked as drugs, but also
compounds bearing reactive or toxic groups may be ranked

as drugs due to the overwhelming similarity in the other parts
of the compounds with some existing drugs.

2. Methodology

The constituents of a molecule can be examined at various
levels of atom grouping. The lowest grouping would be the
individual atoms contained in the molecule. A higher
grouping is an atom plus its neighbor atoms. Even higher
groupings can be obtained by extending the group sizes in a
systematic way. The higher the grouping level at which the
molecule is examined, the greater is the knowledge of
chemical features. Using a systematic approach, we started
from the lowest level to a grouping with four atom centers
with neighbor atoms. In all the analyses, hydrogen atoms
were omitted.

Atom TypessLevel 1. An atom type is assigned to each
heavy atom in a molecule. The definition of atom types is
given in Table 1. The definition was kept as simple as
possible since the environmental dependence of atoms is
treated mainly by multilevel groupings, rather than by
dividing atoms into types. However, we separated the atoms
with sp2 hybridization from those without sp2 hybridization.
Such a simple separation will aid in capturing theπ-electron
conjugation. The unification of chlorine, bromine, and iodine
into one type is due solely to their similar chemical features
(even though they have diverse biochemical properties),
which are somewhat distinct from fluorine.

Monocentered GroupsLevel 2. Any heavy atom, to-
gether with its bonded heavy neighbors, defines a mono-
centered group (Figure 1a). It is recorded by a character string
such as

where the vertical bar is used for ease of readability and
should not be counted as a character. The first two characters
are designated for indicating the atom type of the core atom.
The third character designates the order of the bond between
the core atom and its first neighbor. The fourth and fifth
characters designate the type of first neighbor. The sixth is
for the order of the bond core to second neighbor, and the
seventh and eighth are for the type of second neighbor. It
continues accordingly until all the immediate neighbors are
described. The neighbor atoms should be arranged in a
descending order according to their values. The valuew of
a neighbor atom with type such as A1 and bond ordern is
defined as

Table 1. Definition of Atom Types Used in the MLCC
Calculationsa

type definition

C2 sp2 carbon
C1 non-sp2 carbon
N2 sp2 nitrogen
N1 non-sp2 nitrogen
O2 sp2 oxygen
O1 non-sp2 oxygen
G1 any Cl, Br, or I

a For all other cases, each element belongs to a different type.

| C1 | 1 | A1 | 2 | A2 | 1 | A3 | ... (1)

w ) ‘A’ * 100000 + ‘1’ * 10 + n (2)
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where ‘A’ and ‘1’ represent the ASCII codes of these
characters. In notation 1, a neighbor atom always follows
its corresponding bond.

Expression 1 is also considered as a descriptor of core
atom C1, which will be used for the notation of higher level
groups.

Dicentered GroupsLevel 3. Any two adjacent heavy
atoms, together with their nearest neighbors, define a
dicentered group (Figure 1b). It is recorded by a character
string with three subunits as

where the first subunit records the descriptor of core atom
C1 defined as in expression 1, the second subunit records
the order of bond C1-C2 with a single character, and the
third subunit records the descriptor of core atom C2. The
core atom with a descriptor of higher priority occupies the
first subunit. The priority between two character strings is
determined by comparing each pair of member characters
in corresponding positions in the order from the first positions
to the last. The first inequality encountered determines which
of the strings has higher priority.

Tricentered GroupsLevel 4. Any three adjacent heavy
atoms, together with their nearest neighbors, define a

tricentered group (Figure 1c). It is recorded by a character
string with five subunits as

where subunit DC0 records the descriptor of central core
atom C0; b1 records the order of bond C0-C1; DC1 records
the descriptor of side core atom C1; b2 records the order of
bond C0-C2; and DC2 records the descriptor of side core
atom C2. The order of the side core atoms is determined
according to the priorities of their descriptors and orders of
the bonds linking them to the center.

Tetracentered GroupsLevel 5. Any four contiguous
heavy atoms, together with their nearest neighbors, define a
tetracentered group. There are two types of tetracentered
groups. Type 1 has a central core atom and three side core
atoms linked to the center (Figure 1d), while type 2 has
chain-like linking as C0-C1-C2-C3 (Figure 1e). A tetra-
centered group of type 1 is recorded by a character string
with eight subunits as

where subunit 1 indicates that it is type 1 tetracentered group,
and the following subunits record the descriptor of the central
core atom and the bond orders and descriptors of the three
side core atoms, respectively. While the central core atom
is always located at the second subunit, the three side core
atoms and their bonds should be arranged in descending order
according to the priorities of their descriptors and bond
orders.

A tetracentered group of type 2 is recorded with the same
format as string 5, but the first subunit is filled with character
‘2’ instead of ‘1’ and the rest of the subunits are filled with
the descriptors of the core atoms and the orders of the bonds
between the core atoms. These are entered in the order C0-
C1-C2-C3 if the C0 end has higher priority than the other
end. The order of recording will be reversed if the C3 end
has higher priority. The priorities of the ends are determined
according to the descriptors of the corresponding atoms and
bonds in a way that the atoms and bonds closer to the ends
are compared first.

Group Type. Two n-centered groups with identical
notations will be attributed to a same group type.

Multilevel Grouping Analysis of a Molecule. Providing
the above definitions ofn-centered groups, the local struc-
tures within a molecule can be analyzed at multiple levels.
The atom types within a molecule are first assigned (level 1
analysis). Then,n-centered groups are searched forn varying
from 1 to 4. The groups within each level are compared
between each other, and classified into a set of unique group
types. The occupancy, which corresponds to the number of
appearances of a group type within a molecule, is calculated
for each unique group type.

Drug Group Library. A multilevel grouping analysis is
performed for each molecule in the drug library. It results
in a set of group types for each molecule with corresponding
occupancies. The group types from different molecules are
compared to identify a set of unique group types across the
library. For each unique group type, three quantitiesw1, w2,
andf are determined, where (1)w1, minimum occupancy, is

Figure 1. Definition of monocentered group (a), dicentered group
(b), tricentered group (c), tetracentered group type 1 (d), and
tetracentered group type 2 (e). The core atoms are circled and
labeled with letter C, and the side atoms are labeled with letter A.

| descriptor of C1| bond order| descriptor of C2| (3)

| DC0 | b1 | DC1 | b2 | DC2 | (4)

| 1 | DC0 | b1 | DC1 | b2 | DC2 | b3 | DC3 | (5)
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the occupancy in the molecule in which a group type appears
the least number of times (w1 ) 0 if one molecule cannot
be assigned to a particular group type); (2)w2, maximum
occupancy, is the occupancy in the molecule in which a
group type appears the most number of times; and (3)f is
the fraction of molecules that contain a particular group type.
The unique group types, as well as the associated values of
w1, w2, andf, are stored into the Drug Group Library (DGL),
a database which will be used in the calculations of drug
compatibility of a compound.

Drug Compatibility of a Compound. A multilevel
grouping analysis is performed on a compound. Each of the
identified group types is compared with each of the types in
the DGL. A group type of a compound is compatible with
DGL if its string notation matches one of those in the DGL
and its occupancy falls between the correspondingw1 and
w2 in the DGL. If all the group types at leveln are compatible
with the DGL, leveln is called “a compatible level”. The
drug compatibility, or MLCC value, of a compound is
evaluated as follows,

where MAX is a function that returns the maximum of its
argument values, and the arguments include the constant 0
and the values of all the compatible levels. Thus, the MLCC
value of a compound corresponds to the highest level at
which the compound is found compatible with DGL, or zero
if no compatibility is found at any level. In other words, an
MLCC value of 0, 1, 2, 3, 4, or 5 indicates total incompat-
ibility, compatibility only in atom type, compatibility up to
mono-, di-, tri-, or teracentered group, respectively.

Drug Library. The drug library used for calculations
contains 6522 compounds from the CMC (98.1) database9

and 5182 from the MDDR (97.2) database,10 totaling 11704
compounds. All the compounds in CMC are used except for
those labeled “antineoplastic”, “anticancer”, “radiopaque”,
“contrast agent”, “solvent”, “surfactant”, “sunscreen”, “ultra-
violet screen”, “emetics”, “preservatives”, “aerosol propel-
lant”, “chelator”, or “buffers”. All the compounds in MDDR
are used except for those labeled “biological testing”, “anti-
neoplastic”, or “anticancer”. Anticancer drugs are excluded
from normal drugs because they are often highly cytotoxic
and are likely to react with protein targets. The compounds
under “biological testing” may not be drugs. However, those
passed through the biological testing phase have certain
proved quality, so they were added to the drug library.

Test Compounds.The top selling drugs were determined
based on the total worldwide sales in 1997 in U.S. dollar
values as published by PharmaBusiness.11 The anticancer
drugs and protein drugs were excluded. The compounds
under biological testing were those in the MDDR database
which are indicated as “biological testing” in the ACTIVITY
field (excluding anticancer compounds). The test set for
anticancer drugs was those in CMC which are indicated as
“antineoplastic”. The set used to represent non-drug-like
molecules include alkylating agents, acylating agents, un-
stable agents, carcinogens, and compounds with toxicophores
such as nitrosamine, nitrosourea, hydrazine, thiourea, and
phosphamine.

3. Results

We first applied the multilevel grouping analysis to 11704
compounds in the drug library. This resulted in a set of
unique group types that is saved in the DGL. This library
was subsequently used to analyze the drug compatibility of
the test compounds. The following sections concern the
generation of DGL and the applications to the top selling
drugs, compounds under biological testing, anticancer drugs,
and known problematic molecules, as well as a comparison
of the results from the different sets of compounds.

Completeness and Characteristics of the DGL.For each
of the grouping levels, the numberM of group types in the
DGL is plotted as a function of the numberN of molecules
collected from the drug library. The plot for the dicentered
group is given in Figure 2 as an example. One can see that
the slope of the curve is much deeper at the beginning than
at the end. The slowing down of theM variation implies
that fewer new group types per molecule are identified when
more and more molecules are collected. In the later phase,
when a molecule is added, many of the group types of the
molecule are identical to the existing types in the DGL, so
that fewer unique group types are added into the DGL.
Ideally, a zero growth ofM would be expected at the end of
collection if no new group type can be found.

While the exact zero growth was not observed, an
assessment of the completeness,σ, of the DGL can be
obtained based on the initial and final slopes,ki andkf, of
the curve, using the following equation

σ is equal to 1 if the zero growth is reached, or 0 if no
slowing down is observed. Let us consider the ensemble of
the potential group types as a closed space, and that at the
final stage of collection of molecules, a fractionx of the
space is populated. The probability of hitting an unpopulated
spot, or new group type, in the space will be proportional to
(1-x). Let us also consider that a molecule generatesn
random group types on average. Then random group types
will contribute, at the final stage, onlykf new group types,
which is equal to (1-x)n on a statistical basis. Then can be
approximated byki since all group types are new at the

MLCC ) MAX {0, n1, n2, n3, ...,nN} (N < 6) (6)

Figure 2. Plot of the numberM of unique group types versus the
numberN of molecules collected in the accumulation of the drug
group library (DGL) for dicentered groups.

σ ) 1 - kf /ki (7)

Designing Drug-Like Libraries Journal of Combinatorial Chemistry, 1999, Vol. 1, No. 6527



beginning and no statistical preferences are assumed between
the initial samples and the final ones. In this case,x is actually
theσ defined in eq 7. Therefore,σ can be interpreted as the
fraction of the group type space occupied at the end of the
collection.

The values ofki, kf, andσ were calculated based on the
plot of M versusN, for mono-, di-, tri-, and tetracentered
groups, respectively. These are given in Table 2, together
with the total number of group types for each level of
grouping and for atom type. This indicates that the complete-
ness of the current DGL is 74%, 89%, 88%, or 80% of the
potential group type space, respectively, for mono- to
tetracentered group.

The most common atom types in the obtained DGL are
C1, C2, N1, O1, O2, N2, G1, S, F, Na, and P with frequency
going in descending order. The sp2 carbon is equally as
populated as the non-sp2 carbon. The sp2 oxygen is slightly
less populated than the non-sp2 oxygen. The sp2 nitrogen is
significantly less populated than the non-sp2 nitrogen. The
halogen atoms G1 (Cl, Br, or I) and F are frequently found
in drugs.

Table 3 gives some of the most populated tetracentered
group types with the correspondingw1, w2, number, and per-
centage of molecules. There are usually 6 to 7 heavy atoms
involved in defining a tetracentered group, sufficient to al-
most cover an entire phenyl ring. A tetracentered group can
cover up to 14 heavy atoms in highly substituted structures.
The most populated types can match groups such as phenyl
and conjugated polyring, as well as alkyl, alcoholic, or amine
substitutions of these groups. The structures of alkyl trisub-
stituted amines and nonbranched alkyl chains are highly
populated. However, a compound bearing the most populated
drug motifs may not necessarily be a drug. A regular MLCC
calculation is needed to assess drug feasibility of a com-
pound.

Application to the Top Selling Drugs. To answer the
question as to whether the “good” drugs have high compat-
ibility to DGL, we performed the following computer
experiments. In one experiment, five top selling drugs were
taken, and their drug compatibility values (MLCC) were
calculated. To do this, the testing drugs were first removed
from the drug library. The DGL was regenerated in the
absence of the contributions of these drugs. The resultant
DGL was used for calculation of MLCC of the testing drugs.
After one experiment, the next five top selling drugs were
taken and the same calculations were performed. Such an

experiment was repeated 16 times so that 79 top selling drugs
were calculated (the last experiment had only four drugs).
The resulting MLCC values as well as the annual sales of
each tested drug are listed in Table 4. The percentage of
molecules that show compatibility at various levels are given
in the first row of Table 5. It indicates that 60 out of 79
molecules are fully drug-compatible, 70 are compatible at
level 4, and 100% of the molecules are compatible at the
atom type level. While a majority of the molecules are drug-
compatible, there are a significant number of incompatible
molecules. The percentages of the incompatible molecules
coincide with the percentages of the unoccupied space of
group type by the DGL: 24%, 11%, or 8% versus 20%, 12%,
or 11% for tetra-, tri-, or dicentered group, respectively. It

Table 2. Sizes and Completeness of the Drug Group
Libraries

grouping level Na ki
b kf

c σd

atom type 40
monocentered 949 0.230 0.059 0.74
dicentered 3995 1.455 0.156 0.89
tricentered 18748 5.98 0.731 0.88
tetracentered 69646 16.5 3.25 0.80
a Total number of atom types or group types.b Initial slope,

dimensionless. Calculated by least squares fitting to the first 300
molecules in a collection.c Final slope, dimensionless. Calculated
by least squares fitting to the last 1700 molecules in a collection.
d Completeness, dimensionless.

Table 3. Most Populated Tetracentered Group Types in the
Drug Group Library

a b c d

a Minimum occupancy.b Maximum occupancy.c Number of
molecules.d Fraction of molecules.
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is likely that the incompatibility found in this case is mainly
due to the incompleteness of the DGL (see Discussion section
for details).

For understanding the structural features of drug compat-
ibility, the top 10 drugs, which are also fully drug-compatible,
are shown in Figure 3. The compatible drugs are often
exclusively composed of building blocks that exist in natural
biomolecules. These building blocks include lactone, lactam,
furan, indole, imidazole, amide, alkyl-substituted amines,
alkyl thioether, phenol, and guanidyl groups. In addition,
halogenated aromatics are often observed in good drugs.

Application to the Compounds under Biological Test-
ing. To examine how many of the development compounds
are drug-compatible, we applied the analysis on 68017

compounds extracted from the MDDR database. These
compounds were claimed to be under biological testing by
various organizations. The full drug library was used in the
derivation of the DGL. The MLCC values were calculated
for all the compounds. The percentage of compounds that
show drug compatibility are given in the second row of Table
5, as a function of the level of grouping. It indicates that
27.4% of compounds are fully drug-compatible, 59.0% are
compatible at the levels up to tricentered group, and the
majority of the compounds become compatible at lower
levels. The chemical structures of 10 examples of drug-
compatible compounds in this set are given in Figure 4. For
comparison, 15 examples of incompatible compounds are
given in Figure 5. It is very interesting to note that, as for

Table 4. Calculation of the MLCC of the Top Selling Drugs

no. name salesa MLCC no. name salesa MLCC

1 simvastatin 3,575.0 5 41 terbinafine 628.4 5
2 omeprazole 2,815.8 5 42 doxazosin mesylate 626.0 4
3 fluoxetine 2,559.0 5 43 terazosin 620.0 5
4 enalapril 2,510.0 5 44 ondansetron 619.9 5
5 ranitidine 2,255.0 5 45 indinavir 582.0 5
6 amlodipine besylate 2,217.0 5 46 metformin 579.0 4
7 loratadine 1,726.0 5 47 propofol 568.2 5
8 amoxicillin 1,517.0 5 48 atenolol 551.9 5
9 sertraline 1,507.0 5 49 beclomethasone 542.8 5

10 paroxetine 1,474.0 5 50 itraconazole 537.0 3
11 ciprofloxacin 1,441.1 5 51 alendronate 532.0 5
12 pravastatin 1,437.0 5 52 imipenem 530.0 5
13 clarithromycin 1,300.0 5 53 cilastatin 530.0 5
14 cyclosporine 1,254.0 1 54 nizatidine 526.5 5
15 famotidine 1,180.0 1 55 divalproex 520.0 5
16 diclofenac 1,105.8 5 56 fluticasone 516.6 1
17 nifedipine 1,101.0 5 57 warfarin 500.0 5
18 lovastatin 1,100.0 5 58 nabumetone 489.0 5
19 sumatriptan 1,085.7 5 59 zidovudine 470.7 5
20 cisapride 1,045.0 5 60 benazepril 456.1 5
21 lisinopril 1,035.0 5 61 isotretinoin 451.3 5
22 ceftriaxone 1,011.4 2 62 buspirone 443.0 5
23 acyclovir 951.2 5 63 cefaclor 442.2 2
24 fluconazole propionate 881.0 2 64 midazolam 431.3 3
25 atorvastatin 865.0 4 65 ceftazidime 426.1 5
26 risperidone 848.0 5 66 fluvastatin 425.8 4
27 diltiazem 825.7 5 67 troglitazone 420.0 4
28 azithromycin 821.0 3 68 carbamazepine 414.4 4
29 captopril 795.0 5 69 metoprolol 413.6 5
30 olanzapine 730.0 5 70 clozapine 408.6 5
31 lanzoprazole 730.0 5 71 venlafaxine 403.2 4
32 ipratropium 691.7 5 72 finasteride 400.0 5
33 losartan 681.0 5 73 pentoxifylline 399.4 5
34 lamivudine 677.3 5 74 stavudine 398.0 4
35 salmeterol xinafoate 665.8 5 75 zolpidem 396.0 4
36 norethindrone 658.0 5 76 quinapril 378.0 5
37 mestranol 658.0 5 77 teprenone 367.7 4
38 cefuroxime axetil 649.4 5 78 granisetron 366.0 5
39 budesonide 643.9 5 79 ketoconazole 364.0 5
40 albuterol 641.2 5

a Worldwide annual sales in 1997, in million dollars.11

Table 5. Comparison of the Results from Four Sets of Compounds

categorya Nb MLCC g 1 (%)c MLCC g 2 (%)c MLCC g 3 (%)c MLCC g 4 (%)c MLCC ) 5 (%)c

drugs 79 100 96 92 89 76
bio testing 68017 99.8 97.9 88.2 59.0 27.4
anticancer 461 96.1 87.2 62.9 38.0 19.1
problematic 57 100 72 39 7.0 0.0
a Four sets of compounds: top selling drugs, compounds under biological testing, anticancer drugs, and known problematic compounds.

b Number of compounds in each test set.c Percentage of the compounds with MLCC values at or above a given value.
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the known drugs, the natural building blocks are also found
in drug-compatible compounds: imidazole and amide in
compounds1 and9, steroid ring in compound2, indole and
urea in compound5, alkyl-substituted amine in compound
6, lactam and amide in compound8. In addition, the fol-
lowing groups are also observed in the drug-compatible com-
pounds: fluorophenyl, pyperidine, 1,4-dioxane, alkyl esters,
piperazine, nitrophenyl, methoxylphenyl, chlorophenyl, chlo-
ropyridine, and trifluoromethylphenyl. In Figure 5, the local
structures responsible for the drug incompatibility of the
compounds are highlighted. The incompatible compounds
contain unnatural building blocks or specifically substituted
natural building blocks. Some of the incompatible local
structures have apparent undesirable features. For example,
the constructs of peroxide and chloromethyl ketone are most
likely unstable or reactive (compounds2 and7); and those
of thiourea and disubstituted hydrazine may be toxic through
metabolic toxication4,5 (compounds5 and6). However, for
some of the other structures, the reasons for their incompat-

ibility are unknown. For example, the incompatible structure
in compound14 indicates aâ-lactam fully substituted with
C2 atoms and with sp2 hybridization at theR-position. It
would be interesting to experimentally verify if and why this
structure is unsuitable for drugs.

Application to Anticancer Drugs. Most anticancer drugs
are cytotoxic. This type of compound should be more
frequently drug-incompatible in comparison to normal drugs
or drug candidates. To see if the method can successfully
demonstrate this point, we applied the analysis on the 461
anticancer drugs extracted from the Comprehensive Medici-
nal Chemistry (CMC) database. The percentage of com-
pounds that show drug compatibility are given in the third
row of Table 5, as a function of the grouping level. It
indicates that 19.1% of compounds are drug-compatible at
level 5, 38.0% are compatible at level 4, and the percentage
increases accordingly when the grouping level decreases. The
fraction of drug-compatible individuals in anticancer drugs
(19.1% at level 5) is small relative to that in the top selling
drugs (76%) or in the biological testing compounds (27.4%).

Figure 3. Chemical structures of the top 10 drug molecules.

Figure 4. Chemical structures of some examples of drug-compat-
ible molecules among those under the phases of biological testing.
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Our method outlined in this paper was successful in
demonstrating the absolute and relative high population of
toxic compounds in anticancer drugs.

Application to Known Problematic Compounds. To
examine if the method can detect the commonly known toxic
or reactive compounds, a set of existing compounds with
known problematic local structures was collected from the
Available Chemical Directory (ACD)12 and from the books
of Jakoby4 and Powis and Hacker.5 The structures of these

compounds are enumerated in Table 6 to demonstrate their
non-drug-like features. The MLCC value was calculated for
each of the compounds. It is given alongside each corre-
sponding structure in Table 6. The percentage of compounds
that showed drug compatibility is given in the last row of
Table 5 as a function of the level of grouping. It indicates
that none of the 57 compounds are drug-compatible at level
5. Only 7% are compatible at level 4. The percentage
increases with decrease of the grouping level. The calcula-
tions demonstrate that the method was able to attribute the
known non-drug-like molecules as non-drugs.

Comparison of Different Test Sets.In summarizing the
results presented in Table 5, a general trend is observed in
terms of the fraction of compounds showing drug compat-
ibility: (top selling drugs)> (biological testing compounds)
> (anticancer drugs)> (known problematic compounds).
This is true for almost all then-centered groupings. The
majority of the compounds in the top selling drugs are fully
drug-compatible. About one-quarter of the biological testing
compounds are fully drug-compatible. About one-fifth of the
known anticancer drugs are fully drug-compatible. None of
the known problematic compounds are drug-compatible.

4. Discussion
The calculation of the multilevel chemical compatibility

is deterministic. An unambiguous answer is given for the
compatibility of a compound with the drug library in terms
of the local structures. Owing to the deterministic feature,
the problem of validation of the method is isolated into the
problems of the quality of the drug library itself and the
biochemical significance of the local structure compatibility.
The major problem of the drug library is its incomplete-
ness: all the potential local structures useful in constructing
a drug do not exist in the current drug library. New drugs
with undiscovered local motifs remain possible. Thus, a
detection of incompatibility between a test compound and
the DGL may be due to the incompleteness of the DGL,
instead of a true “defect” of the compound. However, we
demonstrated that 70-90% of the group type space has been
covered by the current DGL, depending on the level of
grouping. Only a small fraction of group types remains
undiscovered. Therefore, incompatibility of a compound
detected by this method probably reflects a true defect of
the compound. In addition, a compound showing full
compatibility to the current DGL is certainly a drug-
compatible compound in a deterministic sense, providing the
drugs in the library are true drugs.

How probable is it that a drug-compatible compound is
actually a drug? And how probable is it that a drug-
incompatible compound is not a drug? To explore these
questions, we conducted a number of tests. The tests were
designed to examine if there is any correlation between the
drug eligibility of compounds and the local structure compat-
ibility. The MLCC calculations were performed on four sets
of compounds: the top selling drugs, biological testing
compounds, anticancer drugs, and known problematic com-
pounds. The top selling drugs are considered “good drugs”.
The biological testing compounds are the compounds in the
phases preceding the clinical trials according to the publica-
tions and patents. Many of them may not be drugs. The

Figure 5. Chemical structures of some examples of drug-
incompatible molecules among those under the phases of biological
testing. The incompatible local structures are highlighted.
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anticancer drugs should be largely non-drug-like due to their
cytotoxicity. The known problematic compounds are those

that are clearly not suitable for drugs (see Methods for
details). The calculations on these four sets of compounds

Table 6. Numbering, Chemical Structures, and Multilevel Chemical Compatibility (MLCC) Values of the Known Problematic
Molecules

no. mol structure MLCC no. mol structure MLCC no. mol structure MLCC

532 Journal of Combinatorial Chemistry, 1999, Vol. 1, No. 6 Wang and Ramnarayan



indicate that, in terms of the fraction of compounds showing
drug compatibility, (top selling drugs)> (biological testing
compounds)> (anticancer drugs)> (known problematic
compounds). More drug-compatible compounds are found
in the sets containing more drug-like molecules. Therefore,
the method is able to capture the trend in feasibility of
compounds as drug candidates for the tested sets.

The calculations indicated that the majority of the top
selling drugs are fully drug-compatible in terms of the local
structures. About one-quarter of the biological testing
compounds are fully drug-compatible. About one-fifth of the
anticancer drugs are fully drug-compatible. None of the
known problematic compounds are drug-compatible. These
results are consistent with the status of the compounds in
each set. However, a significant fraction of top selling drugs
(24%) are not fully drug-compatible. This may be due to
the incompleteness of the drug library.

The compatibility of a compound to the DGL depends on
the level of grouping. The higher the level of grouping, the
more the nonlocal chemical features are captured, and the
more selective the method is. However, too high a level of
grouping may multiply the diversity of group types so that
the completeness of the library becomes a serious problem.
According to the above tests, most known non-drug-like
molecules are removed at the tricentered group level and all
the non-drug-like molecules are removed at the tetracentered
group level. On the other hand, a substantial number of the
top selling drugs start to be removed at the tetracentered
group level. As a compromise, we suggest that the tri- or
tetracentered group level is chosen as the threshold for
determining the drug compatibility of a compound.

The current algorithm requires that every group type within
a molecule has to be identical to some part of an existing
drug, if a molecule is to be ranked as a drug. This may cause
an over-discriminative prediction: drugs with new, but
acceptable, group types are ranked as non-drugs. A remedy
of this potential problem would be the introduction of certain
similarity measures in determining compatibility between a
target group type and a drug group type. A pair of different
group types could be ranked “compatible” if they were
similar in nature. Thus, the molecules with new, but similar,
group types would also be ranked as drugs.

Examination of the chemical structures allows one to
clarify which types of structures are drug-compatible and
which types are not. Many incompatible local structures
found correspond to the groups that are likely to be either
toxic or reactive. This confirms the capacity of our method
for identifying non-drug-like compounds. A general state-
ment can be made concerning the structural features. The
drug-compatible compounds are often composed of building
blocks that exist in natural biomolecules, such as lactone,
lactam, and amino acid side chain analogues. These building
blocks, however, are assembled somewhat differently in the
drugs than in the natural biomolecules. In contrast, the drug-
incompatible compounds often contain unnatural building

blocks, or natural building blocks with specific substitutions.
The specific substitutions or modifications on a natural
building block may lead to non-drug-like compounds in
certain situations.

Direct application of the MLCC method to virtual com-
binatorial chemistry libraries allows to “cherry-pick” a subset
of individual compounds with drug-like features. Straight-
forward modifications can be made on the current algorithm
to select compounds in such a way that the selected
candidates are accessible through combinatorial synthesis.

Summarizing the above analysis, the multilevel chemical
compatibility approach is able to determine the compatibility
between a compound and a drug library in terms of the local
structures. The applications on the four sets of chemicals
demonstrate that the compatibility in local structure implies
drug-like character to a large extent. It is appropriate to use
MLCC as an expression of the drug-like character of a
compound. The method is fast enough to be used for
prescreening of virtual combinatorial chemistry libraries and
databases of compounds.
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